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Theorem 2 (Entov-Polterovich, [EP09]) 
・A heavy subset is non-displaceable by Hamiltonian 
diffeomorphisms. 
・A superheavy subset is non-displaceable by symplectomorphisms. 

Remark: In this poster, we denote ``superheavy subsets with respect to the  

foundamental class’’ by superheavy subsets. This is not usual notation. 

History: 
 
Entov-Polterovich(EP03): Definiton and construction of Calabi quasi-
morphisms on the group of Hamiltonian diffeomorphisms. 
 
Biran-Entov-Polterovich(BEP): First application of Calabi quasi-
morphisms to non-displaceability 
 
Entov-Polterovich(EP09): 
Definition of heaviness and superheaviness 
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4. Reference 

2. Our Result 

3. Proof of Theorem 3 

The problem of  non-displaceability is one of  important problems in 
symplectic topology 

Denition 1 

To solve the above problem, M. Entov and L. Polterovich defined the 
heaviness and the superheaviness of closed subsets in closed 
symplectic manifolds. 
We omit the definiton of them, but we note that they are defined in 
the term of the Hamiltonian Floer theory. 

The above subset is trivially non-displaceable by homeomorphisms. 

But we can obtain a non-trivial result of non-displaceability. 

Proof of Corollary 4 1. The problem of non-displaceability 
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The following proposition is the important idea in the proof of Theorem 3. 
The proof of this proposition is based on the idea of  K. Irie (I). 

Proposition 5 

To prove Theorem 3 by using Proposition 5, we use  
the following proposition. 

Proposition 6 (essentially Entov-Polterovich, EP09) 

Proof  of Theorem 3 


